如今,机器学习(ML)正在广泛地影响着商业、工程、以及研究等领域。通常,机器学习水平的进步,与软件和自动化的深入迭代有着密切的关系。只要人类的某项活动,需要依赖计算机去进行重复性和判断性的处理,我们就可以通过机器学习来执行与实现。当然,面对各种不确切的待解决问题,我们需要通过定义搜索空间、以及具体的学习算法,来训练计算机去自行判定与解决。
目前,机器学习已经凭借着有效的深度学习,进入了2.0的时代。它们不但可以更好地预测蛋白模型的数据拟合,而且能够在围棋、DotaII、星际争霸II等方面击败专业的人类玩家,以及创建各种十分连贯的文本和语音交互式响应。您可以通过链接,进一步了解机器学习对于不同行业的影响。当然,这些也都离不开各种被称为AutoML的开源工具、以及将ML进行实际应用的优秀实践。
什么是AutoML?作为一大类技术和工具,AutoML可以被用于各种自动化的搜索与学习场景中。例如,我们将贝叶斯优化应用于统计学习算法的超参数(hyperparameter),或是将深度学习模型运用于神经架构的搜索。这些多样化的生态系统,目前已被编录到了AutoML.ai中。其中,最著名的AutoML软件包之一便是:Auto-SciKit-Learn(或称Auto-Sklearn)。它荣获了年至年的ChaLearnAutoML挑战赛的获胜者。
Auto-Sklearn是由德国的自动化机器学习研究小组所开发。作为一个Python包,Auto-Sklearn的构建密切遵循了SciKit-Learn的使用模式,这也是它得名为“Auto-SciKit-Learn”的原因。
除了Auto-Sklearn,Freiburg-Hannover的AutoML小组还开发了Auto-PyTorch库。在下面的简单示例中,我们将使用这两个代码库,作为进入AutoML的切入点。
AutoML的演示首先,我们来设置所需要的软件包和依赖项。在此,我们使用Python3的virtualenv,来管理演示项目的虚拟环境。当然,您也可以使用Anaconda(译者注:一种开源的Python发行版本)和pip,它们的工作方式都是类似的。
下面是在Ubuntu等基于Unix的系统上,设置运行环境的各种命令。如果您使用的是Windows,则可以从Anaconda提示符中通过输入命令,来设置环境。虽然Auto-Sklearn的文档建议用户,从它们的requirements.txt依赖文件处开始安装,但是就本例中的代码而言,并不需要如此。
#createandactivateanewvirtualenvironmentvirtualenvautoml--python=python3sourceautoml/bin/activate#installauto-sklearnpipinstallauto-sklearn值得注意的是,如果您对两个AutoML库使用相同的环境,那么可能会发生冲突。因此我们需要为Auto-PyTorch创建第二个环境。而且该环境中的Python应不低于3.7版本。
deactivatevirtualenvautopt–-python=python3.7sourceautopt/bin/activate#installauto-pytorchfromthegithubrepogitclone转载请注明:http://www.0431gb208.com/sjszyzl/6535.html