为了保证数据采集的准确性,智能驾驶的数据采集车辆搭载了摄像头、雷达等大量不同的传感器。这些传感器从整车布置的安装结构设计、FOV校核,再到实车的装配标定,都需要保证位置准确和稳定,从而支持不同位置传感器数据可以顺利拼接。
实车采集过程中,需要尽可能覆盖各种用户场景。一般来说,道路状态、交通信号和标识、各类车辆和行人目标、天气环境等,都是影响智能驾驶的关键因素,路试采集场景需要涵盖城市、乡村、高速、隧道以及白天和夜晚等,以确保尽可能覆盖用户各种实际场景。
采集过程中,全面的了解测试进展以及测试车辆状态,保证测试数据的有效性,也是测试管理面临的重要挑战。因此需要用到车队管理系统,基于此系统可以实现:1、实时定位监控,车辆位置实时展示,包括车辆实时运动状态、实时车速等;2、实时报警事件消息推送,并在地图上动态展示报警的位置;3、车辆数据统计,包括里程统计、告警统计、状态统计等;4、驾驶员数据统计,具体包含驾驶员行车时间里程统计、告警统计、DMS监控数据统计等;5、驾驶员DMS监测和报警,对于报警消息实时提醒。
通过数据采集系统,可将自动驾驶车辆各类传感器类型的数据进行采集处理,包括常见的CAN、CANFD、ETH车载以太网数据等。用户可以通过数据中心访问数据,进行后续数据分析、数据标注、数据回注等,从而形成完整的数据闭环。
自动驾驶汽车到底需要哪些类型的传感器?自动驾驶汽车是集感知、决策和控制等功能于一体的自主交通工具,其中,感知系统代替人类驾驶人的视、听、触等功能,融合摄像机、雷达等传感器采集的海量交通环境数据,精确识别各类交通元素,为自动驾驶汽车决策系统提供支撑。
1、摄像头摄像头按视频采集方式分为:数字摄像头和模拟摄像头两大类。
车载上一般使用的是数字摄像头,它可以将视频采集设备产生的模拟视频信号转换成数字信号,进而将其储存在计算机里。
模拟摄像头只能将捕捉到的视频信号,经过特定的视频捕捉卡将模拟信号转换成数字模式,并加以压缩后才可以转换到计算机上运用。
举个例子来,我们使用的固定电话就属于模拟信号,它在通话过程中容易产生噪音(电流声或听不清)的情况。而我们的手机为了保持很好的通话质量,就将电话的模拟信号进行了数字化,手机之间的通话质量就非常清晰,同样原理使用数字摄像头能有效减少图像中的噪点和提升成像效果。
一句话概括:模拟视频信号是在一定的时间范围内可以有无限多个不同的取值。而数字视频信号是在模拟信号的基础上经过采样、量化和编码而形成的。模拟信号容易产生信号噪音和干扰,已逐步被数字信号取代。
图片来源:博世
转载请注明:http://www.0431gb208.com/sjszlff/6601.html