毕业论文
您现在的位置: 自动化 >> 自动化资源 >> 正文 >> 正文

LK分享一文带你了解自动驾驶汽车测试技术

来源:自动化 时间:2023/10/10
北京哪个白癜风好 http://www.kstejiao.com/m/

自动驾驶汽车,通过技术实现车辆自动驾驶,目的是减少驾驶疲劳、增强驾驶安全。

自动驾驶汽车按自动化程度可分5级:辅助驾驶、部分自动驾驶、条件自动驾驶、高度自动驾驶和完全自动驾驶。

完全的自动驾驶,可释放人出行驾驶时间,把汽车变成除家、办公室外的人的第三空间,在出行过程中办公和娱乐等。

车辆要实现自动驾驶,需要解决车辆在哪、往哪儿去、怎么去这三个基本问题。解决这些问题,涉及硬件平台、软件算法、交互、安全等多个领域和技术。

自动驾驶等级分级

系统架构

任何一个控制系统,都离不开输入、控制和输出三部分。自动驾驶系统也如此。

自动驾驶车辆,通过传感器感知周围环境信息,输入到计算平台处理,判断车辆位置和构建驾驶态势地图;根据驾驶态势图,对车辆运动进行行为决策、路径规划,再精准控制车辆底盘执行器实现自动驾驶。

从硬件上,自动驾驶系统包括:收集各种信息输入的传感器,对输入信息进行处理、对车辆运动进行规划和控制的计算平台,以及实现转向、制动、加速的底盘执行器。

从软件上,包括感知数据处理的感知层,对车辆运动规划、决策的规划层、对执行器精准控制的控制层。软件主要集成到计算平台中,部分感知数据处理放在智能传感器中。考虑到处理数据越来越大,对计算算力要求越来越高,后续数据处理有部分放到云端服务器的趋势。

自动驾驶系统基本框架

硬件平台

自动驾驶系统硬件,主要包括:智能感知、线控执行、计算平台三部分,分别对应于一般控制系统的输入、输出和控制。

智能感知包括:用于环境感知传感器,如毫米波、激光、超声波雷达和相机等;用于确定车辆位置的定位传感器,如全球卫星导航系统GNSS、惯性导航系统IMU;获取车辆本体数据的自感应传感器,如陀螺仪、车辆CAN总线等。

广义的讲,用于导航的高精度地图、与其他设备通信的V2X设备也是感知硬件之一。

计算平台,是对感知数据处理、进行规划决策并控制执行器。由于处理数据大、算法复杂,发展出了各自类型专用处理芯片,如图像处理芯片GPU、数字处理芯片DSP、可编程芯片FPGA和AI芯片等。

线控执行,是实现车辆运动的执行器,由计算平台控制,包括:车辆转向机构、制动系统、动力系统等。

自动驾驶系统硬件构成

软件平台

软件平台,除了底层驱动、实时操作系统外,上层应用主要包括感知层、规划层和控制层等程序。技术上以各种类型感知算法、定位算法、规划和控制算法等为核心内容。

感知算法

感知目的,就是告诉自动驾驶系统车辆周围环境,哪些区域能通行、哪些有障碍物。

目前广泛应用的方法是间接感知,即通过感知周围物距离、速度、形状等,构建驾驶态势图,进行规划、控制,间接作用于驾驶操作系统。

随着人工智能技术发展,通过深度学习将传感器数据(如车辆环境的图像)与驾驶操作行为构建映射关系,直接作用于驾驶操作系统方法,是未来发展趋势之一。

感知传感器各异,优劣势明显,如毫米波雷达擅长感知目标物运动状态,相机更容易提取目标物形状进行分类。进行各传感器数据融合,充分发挥各自优势,提高感知冗余、准确、时效性,感知融合技术广泛应用,典型算法有卡尔曼滤波、贝叶斯理论等。

感知算法分类

定位算法

定位目的,就是告诉自动驾驶车辆自己目前在哪。只有精准的定位,才可能正确的往哪去、怎么去。

全球卫星定位系统GNSS,如GPS、北斗等,能告诉我们在地球上所处位置,但其精度一般是米级,不能满足车辆自动驾驶厘米级要求。一般需要RTK差分技术辅助,才能实现厘米级定位精度。

GNSS有个问题,一旦被遮挡定位精度就大打折扣,如道路两边高楼、繁茂的树木、隧道内、地下和室内停车场等场景。这种情况下,一般采用相对定位方法,通过里程计法推算实现短时间辅助定位,常用的基于惯导IMU,也有通过车轮、相机、激光雷达推算。

SLAM,实时定位和地图构建,在室内机器人定位被广泛采用。这是一种通过数据特征点匹配的定位方法,常用的分为基于相机SLAM和基于激光雷达SLAM。

在汽车上应用,相机SLAM,容易受到光照条件影响;激光雷达SLAM,容易受到暴雨、灰尘等环境影响,同时,在开阔地方应用也受限,因为无明显特征点而无法进行定位。

定位算法分类

规控算法

规划、控制目的,一是对车辆运动进行全局规划(从地点A到地点B运行路线)、行为决策(判断变道还是超车等)、局部规划(规划局部行驶轨迹,规避障碍物等);二是,精准控制车辆按规划轨迹行驶。

全局路径规划、局部轨迹规划,本质上就是搜索最佳路径。常用的搜索算法为A*算法,考虑节点到起点和终点最短距离作为优先级。轨迹和路径本质区别是轨迹考虑了时间维度,在轨迹生成时考虑障碍物规避和控制约束,构建损失函数,进行最优行驶轨迹选择。

控制算法,最常用的是经典控制算法PID控制。对车辆横向控制,一般采用简化的二轮自行车运行学模型,通过纯跟踪控制-同人类驾驶向前看,选取预瞄点。

为了更精准的控制,提高控制鲁棒性,也有采用车辆运动学模型进行控制,甚至采用横纵向协同控制算法-MPC模型预测控制。

规控算法分类

交互技术

传统汽车交互,在车内,驾驶员通过油门、刹车踏板、换档手柄等给车辆输入驾驶意图,通过物理按钮或触摸屏幕进行车载系统控制。在车外,通过驾驶员手势、喇叭等与行人等交互。

目前在车内,通过语音与车辆交互越来越普遍,手势交互也越来越流行。在完全实现自动驾驶前,为避免驾驶员因过多自动控制而走心,驾驶员状态监控也广泛应用。

未来随着自动驾驶发展和交互技术提高,人们不用

转载请注明:http://www.0431gb208.com/sjslczl/5991.html